Differential Equations

Homework 8 (Optional)
Due Mar. 25, 2024, 4:00 pm

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Find general solutions of the differential equations
(a)

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{\prime \prime}+6 y^{\prime}+9 y=0 \rightarrow r^{2} e^{r x}+6 r e^{r x}+9 e^{r x}=0 \rightarrow r^{2}+6 r+9=0 \\
(r+3)^{2}=0 \rightarrow r=-3 \text { (repeated root) } \rightarrow y_{1}=e^{-3 x}, y_{2}=x e^{-3 x}
\end{gathered}
$$

General solution

$$
y=C_{1} e^{-3 x}+C_{2} x e^{-3 x}
$$

(b)

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
4 y^{\prime \prime}-12 y^{\prime}+9 y=0 \rightarrow 4 r^{2} e^{r x}-12 r e^{r x}+9 e^{r x}=0 \rightarrow 4 r^{2}-12 r+9=0 \\
(2 r-3)^{2}=0 \rightarrow r=\frac{3}{2} \text { (repeated root) } \rightarrow y_{1}=e^{\frac{3}{2} x}, y_{2}=x e^{\frac{3}{2} x}
\end{gathered}
$$

General solution

$$
y=C_{1} e^{\frac{3}{2} x}+C_{2} x e^{\frac{3}{2} x}
$$

(c)

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{\prime \prime}-6 y^{\prime}+13 y=0 \rightarrow r^{2} e^{r x}-6 r e^{r x}+13 e^{r x}=0 \rightarrow r^{2}-6 r+13=0 \\
r=\frac{6 \pm \sqrt{36-4(13)}}{2}=\frac{6 \pm \sqrt{-16}}{2}=3 \pm 2 i \rightarrow y_{1}=e^{3 x} \cos 2 x, y_{2}=e^{3 x} \sin 2 x
\end{gathered}
$$

General solution

$$
y=C_{1} e^{3 x} \cos 2 x+C_{2} e^{3 x} \sin 2 x
$$

(d)

$$
y^{\prime \prime}+8 y^{\prime}+25 y=0
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{\prime \prime}+8 y^{\prime}+25 y=0 \rightarrow r^{2} e^{r x}+8 r e^{r x}+25 e^{r x}=0 \rightarrow r^{2}+8 r+25=0 \\
r=\frac{-8 \pm \sqrt{64-4(25)}}{2}=\frac{-8 \pm \sqrt{-36}}{2}=-4 \pm 3 i \rightarrow y_{1}=e^{-4 x} \cos (3 x), y_{2}=e^{-4 x} \sin (3 x)
\end{gathered}
$$

General solution

$$
y=C_{1} e^{-4 x} \cos 3 x+C_{2} e^{-4 x} \sin 3 x
$$

(e)

$$
y^{(4)}+3 y^{\prime \prime}-4 y=0
$$

Let

$$
y=e^{r x}, y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}, y^{(3)}=r^{3} e^{r x}, y^{(4)}=r^{4} e^{r x}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{(4)}+3 y^{\prime \prime}-4 y=0 \rightarrow r^{4} e^{r x}+3 r^{2} e^{r x}-4 e^{r x}=0 \rightarrow r^{4}+3 r^{2}-4=0 \\
\left(r^{2}+4\right)\left(r^{2}-1\right) \rightarrow r= \pm 2 i, r=-1,1 \rightarrow y_{1}=e^{0 x} \cos 2 x, y_{2}=e^{0 x} \sin 2 x, y_{3}=e^{x}, y_{4}=e^{-x}
\end{gathered}
$$

General solution

$$
y=C_{1} \cos 2 x+C_{2} \sin 2 x+C_{3} e^{x}+C_{4} e^{-x}
$$

(f)

$$
y^{(4)}-8 y^{\prime \prime}+16 y=0
$$

Let

$$
y=e^{r x}, y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}, y^{(3)}=r^{3} e^{r x}, y^{(4)}=r^{4} e^{r x}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{(4)}-8 y^{\prime \prime}+16 y=0 \rightarrow r^{4} e^{r x}-8 r^{2} e^{r x}+16 e^{r x}=0 \rightarrow r^{4}-8 r^{2}+16=0 \\
\left(r^{2}-4\right)^{2}=0 \rightarrow\left(r^{2}-4\right)\left(r^{2}-4\right)=0 \rightarrow(r-2)(r+2)(r-2)(r+2)=0 \rightarrow(r-2)^{2}(r+2)^{2}=0 \\
\rightarrow r=-2 \text { (repeated roots) }, 2 \text { (repeated roots) } \\
\rightarrow y_{1}=e^{-2 x}, y_{2}=x e^{-2 x}, y_{3}=e^{2 x}, y_{4}=x e^{2 x}
\end{gathered}
$$

General solution

$$
y=C_{1} e^{-2 x}+C_{2} x e^{-2 x}+C_{3} e^{2 x}+C_{4} x e^{2 x}
$$

2. Solve the initial value problems
(a)

$$
9 y^{\prime \prime}+6 y^{\prime}+4 y=0, y(0)=3, y^{\prime}(0)=4
$$

Let

$$
\begin{aligned}
y & =e^{r x} \\
y^{\prime} & =r e^{r x} \\
y^{\prime \prime} & =r^{2} e^{r x}
\end{aligned}
$$

Then, the differential equation becomes

$$
\begin{gathered}
9 y^{\prime}+6 y^{\prime}+4 y=0 \rightarrow 9 r^{2} e^{r x}+6 r e^{r x}+4 e^{r x}=0 \rightarrow 9 r^{2}+6 r+4=0 \\
r=\frac{-6 \pm \sqrt{36-4(9)(4)}}{18}=\frac{-6 \pm \sqrt{-108}}{18}=-\frac{1}{3} \pm i \frac{1}{\sqrt{3}} \\
y_{1}=e^{-\frac{x}{3}} \cos \left(\frac{x}{\sqrt{3}}\right), y_{2}=e^{-\frac{x}{3}} \sin \left(\frac{x}{\sqrt{3}}\right)
\end{gathered}
$$

General solution

$$
\begin{gathered}
y=c_{1} e^{-\frac{x}{3}} \cos \left(\frac{x}{\sqrt{3}}\right)+c_{2} e^{-\frac{x}{3}} \sin \left(\frac{x}{\sqrt{3}}\right) \\
y(0)=c_{1} e^{-\frac{0}{3}} \cos \left(\frac{0}{\sqrt{3}}\right)+c_{2} e^{-\frac{0}{3}} \sin \left(\frac{0}{\sqrt{3}}\right)=c_{1}=3 \\
y=3 e^{-\frac{x}{3}} \cos \left(\frac{x}{\sqrt{3}}\right)+c_{2} e^{-\frac{x}{3}} \sin \left(\frac{x}{\sqrt{3}}\right) \\
y^{\prime}=-e^{-\frac{x}{3}} \cos \left(\frac{x}{\sqrt{3}}\right)-\frac{3}{\sqrt{3}} e^{-\frac{x}{3}} \sin \left(\frac{x}{\sqrt{3}}\right)-\frac{c_{2}}{3} e^{-\frac{x}{3}} \sin \left(\frac{x}{\sqrt{3}}\right)+\frac{c_{2}}{\sqrt{3}} e^{-\frac{x}{3}} \cos \left(\frac{x}{\sqrt{3}}\right) \\
y^{\prime}(0)=-e^{-\frac{0}{3}} \cos \left(\frac{0}{\sqrt{3}}\right)-\frac{3}{\sqrt{3}} e^{-\frac{0}{3}} \sin \left(\frac{0}{\sqrt{3}}\right)-\frac{c_{2}}{3} e^{-\frac{0}{3}} \sin \left(\frac{0}{\sqrt{3}}\right)+\frac{c_{2}}{\sqrt{3}} e^{-\frac{0}{3}} \cos \left(\frac{0}{\sqrt{3}}\right)=-1+\frac{c_{2}}{\sqrt{3}}=4 \\
c_{2}=5 \sqrt{3}
\end{gathered}
$$

Therefore

$$
y=3 e^{-\frac{x}{3}} \cos \left(\frac{x}{\sqrt{3}}\right)+5 \sqrt{3} e^{-\frac{x}{3}} \sin \left(\frac{x}{\sqrt{3}}\right)
$$

(b)

$$
y^{(3)}+10 y^{\prime \prime}+25 y^{\prime}=0, y(0)=3, y^{\prime}(0)=4, y^{\prime \prime}(0)=5
$$

Let

$$
y=e^{r x}, y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}, y^{(3)}=r^{3} e^{r x}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{(3)}+10 y^{\prime \prime}+25 y^{\prime}=0 \rightarrow r^{3} e^{r x}+10 r^{2} e^{r x}+25 r e^{r x}=0 \rightarrow r^{3}+10 r^{2}+25 r=0 \\
r(r+5)^{2}=0 \rightarrow r=0,-5,-5 \rightarrow y_{1}=e^{0 x}, y_{2}=e^{-5 x}, y_{3}=x e^{-5 x}
\end{gathered}
$$

General solution

$$
\begin{gathered}
y=C_{1}+C_{2} e^{-5 x}+C_{3} x e^{-5 x} \\
y(0)=C_{1}+C_{2}=3 \\
y^{\prime}(0)=-5 C_{2}+C_{3}=4 \\
y^{\prime \prime}(0)=25 C_{2}-10 C_{3}=5 \\
C_{1}=\frac{24}{5}, C_{2}=-\frac{9}{5}, C_{3}=-5 \\
y=\frac{24}{5}-\frac{9}{5} e^{-5 x}-5 x e^{-5 x}
\end{gathered}
$$

